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INVARIANT TMBEDDING AND GENERALIZED TRANSPORT THEORY--
A BASIC STOCHASTIC FUNCTIONAL EQUATION

Richard Bellman and Robert Kalaba
The RAND Corporation., Santa Monica, California

and

G. Milton Wing, Los Alamos Scientific Laboratory
Los Alamos, Nev Mexico"

1. Introduction. In a series of recent papers, the principle of
invariant imbedding has been utilized in the study of a variety of
physical proocesses: rediative tn.nsror,l’2 (see Pmiundorfers'h's)
0=4 random walk and ne-ttering,lo and vave

neutron transport,

propaption.u

The aim of the present peper is to extend previous results and
techniques so as to include an extensive category of transport
processes involving both deterministic and stochastic interaction
general geametries, and the determinatior of characteristic functions
.nd probeabilities as well as fluxes, which is tc say, expected values.

Utilising the principle of invariant imbedding,’ a basic stochastic
functional equation will be derived. ¥roam this equation appropriately
specialized, can be obtained all the relations pertaining to fluxes
contained in the foregoing papers, and in addition corresponding
relations for characteristic functions. From these equations for
higher moments can be obtained. As far as we know, this use of
stochastic functional equations is nev.

For intuitive purposes, the reader may use as a model neutron
trensport theory. In order to emphasize the common features of a
number of particle processes, wve have encased the problem in a more
abstract setting. In this wvay we obtain an extensive generalization
of the fundamental invariance prineiples of Asbarzumian’® and
Chandrasekhar.l”

.Hort performed in part under the auspices of the U.S Atamic
Energy Commission.



2. Description of a Generalized Transfer Process. By a 'particle' we
shall mean a state vector p specified by a position coordinate x. The

state vector contains informmtion regerding energy, direction of motion,
and other information required to specify the type of particle. As
the particle proceeds through a medium, it engages in interaction of
deterministic or stochastic nature wita the medium. This interaction
leaves the medium unaffected, but is equivalent to a sequence of
transformations of the state vector, and in some cases of the number
of particles. We shall assume that there are no particle-particle
interactions. Although we have begun in another pnblicttion9 the
study of collision processes using invariance principles, a general
formulation of these more complicated processes is left for another
time.

In order to use functional equation techniques, we utilize the
concept of a stratified medium. In a finite-dimensional space,
conceive of a family of surfaces, of one less dimension. each of
vhich is specified by the parameter x. This family is assumed to
have the property that its members can be used to partition the whole
space into a denumerable set of strata with the following continuity
property. Each stratum possesses the property that the probability
of an interaction between a particle and the medium within this
stratum can be made arbitrarily small by choosing the stratum to be
bounded by arbitrarily closely neighboring members of the family of
surfaces. GSchematically.

(p)
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We shall call the region to the right of an x-surface, an x-region.

The most common stratifications are those accomplished by planes,
spheres and cylinders, but more general families of surfaces can
equally wvell be used.

Given a region of space bounded by an x-surface and an O-surface,
ve vish to determine the number and nature of the particles existing
to the left of the x-surface, 'reflected' particles, and those existing
to the right of the O-surface, 'transmitted' particles, as a result of
a particle specified by p incident on the left as in Fig. 1.

Let us now introduce some random variables which we shall use to
describe this transport process analytically.

£(p,q;x) = the random number of particles in state g
reflected from the x-region over all “ime, due
to an initial particle in state p impinging
upon the x-surface from the left at time zero.

The direction, velocity, and position on the x-surface are all contained
vithin the state vector.

r(p;x) = 1, if the particle in state p is involved in an
interaction in the stratum [x,x-A] , or in the
stratum [x-A,x] . (2.2)
= 0, otherwise.

l(p;ql,QQ,...,qt;x) « 1, if the result of an interaction is to
produce k particles in states
ql,q_z,...,qk, ka«12,...,
= 0, othervise.
By the stochastic variables :(1)(p,q;x), r(i)(p,x), s(i)(p;ql.q2 ..q,‘:x)
ve shall mean respectively any of a denumerable set of variables with
the properties described above.
Let T(p,x) denote he deterministic change in state caused by
passage through the [x,x-A] stratum.
Fipelly, ve make the simplifying assumption that there are only
a finite set of possible states. This permits us to deal vith
characteristic functions rather than charucteristic functionals,



and, in any case, is the type of assumption required to carry through
any computations.

3. Verdbal Description of Process. In order to obtain the functional
equation of the folloving section we view the process {n the following

faghion. A particle incidsnt upon the x-surface undergoes a determ.n-
istic transformation and a stochastic transformation in the [ x.x-A]
stratum. The result of the deterministic transformation is to con ert
it from a state p to a state T(p.x). The result of the stochastic
transformation is to produce a random number of partic.es ‘n a random
set of states. Pach of these particles acts indep~ndently of the others
as a particie incident upon the (x-A) sur’ace. As a result of a
particle incident upon the (x-A) surface, there is produced a random
number of emergent particles in a randam set of states Facn of
these undergoes a dsterministic and stochastic transformation as !t
travels through the [x-A.x] stratum. and @o on

In deriving the basic equaticns. 'owever, we need not pay
attention to particles wvhich are the result of more than one determin-
{stic or stochastic interaction, since in either case the end effects
are of order A2. It is this property vhich aearables us to deri.e
relatively simple equations dsscridbing Qquite camplicated processes,
and {t is for this reason that wve employ the stratification descrided

above.

<. The Basic Stochastic Functional Equation. Using the invariant
imbedding techn!que and enumerating events we are led to the fcllowing
stoshagtic funstional relation:
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vhere y(p,q;x) is a contribution from events that ha.e probability
0(82) as 0. A similar equation oan be derived for the nevtrons
transmitted through the stratum (x,o]

5. Discussion. Taking expected valuss, ve derive the {lux equations
of the typs appearing in the papers cited above. Taking the expected
value of 01" p,q,x), ve obtain. after a certain amount of analytic
manipulation, corresponding functional squations for the characteristic
funetions. The full results vill be presented subsequently.
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